Ba-Ma(LABG2009): Lernbereich Mathematische Grundbildung: Unterschied zwischen den Versionen

Aus LehramtsWiki
Wechseln zu: Navigation, Suche
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 53: Zeile 53:
|raum=WSC-S-2.08 ([[Weststadt Carree (WSC)|Weststadt Carree]])
|raum=WSC-S-2.08 ([[Weststadt Carree (WSC)|Weststadt Carree]])
|tel=0201 183-2528
|tel=0201 183-2528
|sprechzeiten=Mi 14:00 - 15:00 Uhr
|sprechzeiten=nach Vereinbarung
|email=[mailto:claudia.boettinger@uni-due.de claudia.boettinger​@uni-due.de]
|email=[mailto:claudia.boettinger@uni-due.de claudia.boettinger​@uni-due.de]
|www=<BLANK Text="Webseite">https://www.uni-due.de/mathematik/mathematik_dekanat_ansprechpartner.php</BLANK>
|www=<BLANK Text="Webseite">https://www.uni-due.de/mathematik/mathematik_dekanat_ansprechpartner.php#studienberatung</BLANK>
}}
}}
}}
}}

Version vom 1. März 2017, 17:51 Uhr

Mit dem Winter­semester 2011/12 wurde das Lehramts­studium an der UDE auf ein gestuftes System mit Bachelor- und Master­studien­gängen umgestellt. Diese Seite beinhaltet Informationen für Studierende, die ihr Studium vor dem Wintersemester 2016/2017 aufgenommen haben und wird kontinuierlich um verfügbar werdende Informationen zum Lehramtsstudium im Lernbereich Mathematische Grundbildung mit den Abschlüssen Bachelor und Master erweitert.

Präsenz des Studiengangs Mathematik

Informationen für Erstsemester

Für die Lehramts­studierenden ist im Fachbereich Mathematik die Arbeits­gruppe Didaktik der Mathematik  zuständig. Informationen zur O-Woche findet ihr im Erstsemesterportal der UDE .

Didaktik der Mathematik

Die Didaktik der Mathematik  setzt sich mit mathematischen Lehr- und Lernprozessen aus­ein­ander und ist dementsprechend für die fach­didaktischen Komponenten in den mathe­matischen Lehramts­studiengängen verantwortlich.

Aktuell besteht die Didaktik der Mathematik aus folgenden Arbeits­gruppen:

  • AG Barzel : Entwicklung und Erforschung sinnstiftender Lern­umgebungen - Einsatz digitaler Mathematik­werkzeuge - Visualisierungen und Repräsentationen - Algebraisches Denken - Stochastisches Denken - Geschichte der Mathematik in ihrer Bedeutung für den Mathematikunterricht - Lehrerbildung
  • AG Büchter : Material­unterstützter Vorstellungs­aufbau im Mathematikunterricht - Sprach­kompetenz und Mathematik­lernen - Raumvorstellung und Mathematikleistung - Schülervor­stellungen zu mathematischen Begriffen - Curriculum­forschung und -entwicklung - Mathe­matik in der Eingangs­phase unterschiedlicher Studien­gänge
  • AG Hefendehl-Hebeker : Entwicklung des algebraischen Denkens - Gestaltung von Lern­umgebungen im Spannungs­feld zwischen Steuerung und Offenheit - Integration von fach­lichem und fach­didaktischem Wissen in der Lehramts­ausbildung
  • AG Jahnke : Genese des Argumentierens und Beweisens - Geschichte der Mathematik - Geschichte der Mathematik im Unterricht
  • AG Rott : Mathematisches Problemlösen - Heurismen und Prozess­regulation
  • AG Schacht : Begriffsbildung im Mathematikunterricht- Neue Medien im Mathematikunterricht
  • AG Scherer : Lernprozess- und Unterrichts­forschung
  • AG Steinbring : Mathematik­didaktische Grundlagen­forschung - Epistemologisch orien­tierte Analysen mathematischer Interaktions­prozesse - Entwicklung und Erforschung mathematischer Lehr- und Lern­prozesse in Kooperation mit der Unterrichts­praxis

Prüfungsordnungen

Gemeinsame Prüfungs­ordnungen (Bachelor)  und spezifische Fach­prüfungs­ordnungen (Bachelor)  sowie Gemeinsame Prüfungs­ordnungen (Master)  und spezifische Fach­prüfungs­ordnungen (Master)  für die verschiedenen Studien­gänge und Fächer im Lehramt finden sich auf der täglich aktualisierten Liste Erlasse, Satz­ungen und Ordnungen  des ZLB. Die dort aufgeführten Links leiten direkt auf das entsprechende PDF Dokument weiter, sobald dieses verfügbar ist.

Studienverlaufspläne und Modulhandbücher

Studien­verlaufs­pläne, Modul­hand­bücher und andere wichtige Dokumente findest du unter den folgenden Links:

Aufbau des Studiums

Bachelor

Das Bachelorstudium besteht aus folgenden Modulen:

  • Zahlen und Zählen (insgesamt 8 CP)
  • Zahl und Raum (insgesamt 12 CP)
  • Grundlagen der Schulmathematik (insgesamt 10 CP)
  • Berufsfeldpraktikum (insgesamt 6 CP)
  • Erkundungen von Mathematiklernen (insgesamt 11 CP)
  • Bachelorarbeit (insgesamt 8 CP)


Vorlage:SqueezeInfobox


 
Semester Modul Veranstaltungen V-Form SWS CP
1 Zahlen und Zählen Arithmetik VO+ÜB 2+2 6
1 Zahlen und Zählen Elementare Kombinatorik VO+ÜB 1+1 2
2 Zahl und Raum Didaktik der Arithmetik VO+ÜB 2+2 6
3 Zahl und Raum Elementare Geometrie VO+ÜB 2+2 6
3 Grundlagen der Schulmathematik Daten und Zufall VO+ÜB 1+1 2
4 Grundlagen der Schulmathematik Mathematik in der Grundschule VO+ÜB 2+2 6
4 Grundlagen der Schulmathematik Elementare Funktionen VO+ÜB 1+1 2
5 Berufsfeldpraktikum Berufsfeldpraktikum 3
5 Berufsfeldpraktikum Begleitveranstaltung zum BFP
1 der folgenden 6 Veranstaltungen:
Didaktik der Arithemtik
oder
Größen- und Sachrechnen
oder
Didaktik der Stochastik
oder
Didaktik der Geometrie
oder
Übergänge
oder
Besondere Kinder
SE 2 3
5 Erkundungen von Mathematiklernen Mathematiklernen in substanziellen Lernumgebungen VO+ÜB1 2+2 6
6 Erkundungen von Mathematiklernen Diagnose und Förderung
1 der folgenden 4 Veranstaltungen:
Besondere Kinder im MU
oder
Differenzierung
oder
Mathematische Strukturen
oder
Anwendung von Mathematik
SE 3 5
6 Bachelorarbeit 2 8
Summe3 27 41

1 In der Übung zum Modul muss 1 der folgenden 4 Veranstaltungen belegt werden:
„Besondere Kinder im Mathematikunterricht“ oder „Differenzierung“ oder „Mathematische Strukturen“ oder „Anwendung von Mathematik“
2 Die Bachelorarbeit kann auch in einem anderen Fach geschrieben werden.
3 Ohne Berufsfeldpraktikum und Bachelorarbeit.

Ergänzende Informationen:

  • Die Teilnahme am Modul „Grundlagen der Schulmathematik“ setzt die erfolgreiche Absolvierung des Moduls „Zahlen und Zählen“ voraus.
  • Die Teilnahme am Modul „Erkundungen von Mathematik­lernen“ setzt die erfolgreiche Absolvierung der Module „Zahlen und Zählen“ und „Zahl und Raum“ voraus.
  • Neben den Modul- und Modulteilprüfungen sind im Fach Mathematik weitere Studien­leistungen zu erbringen. Details zu den Prüfungen und Leistungen werden früh­zeitig von den entsprechenden Dozentinnen und Dozenten bekannt gegeben.
  • Die Bachelorarbeit soll 35 Seiten nicht überschreiten. Notwendige Detailergebnisse können gegebenenfalls zusätzlich in einem Anhang zusammengefasst werden. Details zur Bachelorarbeit werden früh­zeitig von den entsprechenden Dozentinnen und Dozenten bekannt gegeben.

Master

Das Masterstudium kann vertieft oder nicht vertieft studiert werden.

Vertiefer

  • Mathematik Schwerpunkt Anwendungen (insgesamt 5 CP)
  • Mathematik Schwerpunkt Strukturen (insgesamt 5 CP)
  • Didaktik und Fach Mathematik (insgesamt 12 CP)
  • Praxissemester (insgesamt 3 CP)
  • Begleitmodul zur Masterarbeit (insgesamt 3 CP)
  • Masterarbeit (insgesamt 20 CP)

 
Semester Modul Veranstaltungen V-Form SWS CP
1 Mathematik Schwerpunkt Anwenden 1 der folgenden 3 Veranstaltungen:
Elementare Stochastik
oder
Funktionen und Anwendungen
oder
Kryptographie
VO+ÜB 2+2 5
1 Mathematik Schwerpunkt Strukturen 1 der folgenden 3 Veranstaltungen
Lineare Algebra
oder
Vertiefung Geometrie
oder
Elementare Zahlentheorie
VO+ÜB 2+2 5
1 Didaktik und Fach Mathematik Vorbereitung Praxissemester SE 1 2
2 Praxissemester Begleitseminar Praxissemester SE 2 3
3 Didaktik und Fach Mathematik Mathematik lehren und lernen VO+ÜB 1+2 4
3 Didaktik und Fach Mathematik Vertiefendes Didaktikseminar SE 2 3
3 Didaktik und Fach Mathematik Vertiefendes Mathematikseminar SE 2 3
4 Begleitmodul zur Masterarbeit Professionelles Handeln weiter­entwickeln aus der Sicht der Mathematik­didaktik bzw. elementaren Mathematik SE 2 3
4 Masterarbeit1 20
Summe2 16 23

1 Die Masterarbeit kann auch in einem anderen Fach geschrieben werden.
2 Ohne Masterarbeit.

Nicht-Vertiefer

 
Semester Modul Veranstaltungen V-Form SWS CP
1 Mathematik 1 der folgenden 6 Veranstaltungen:
Elementare Stochastik
oder
Funktionen und Anwendungen
oder
Kryptographie
oder
Lineare Algebra
oder
Vertiefung Geometrie
oder
Elementare Zahlentheorie
VO+ÜB 2+2 5
1 Mathematik lehren und lernen Vorbereitung Praxissemester SE 1 2
2 Praxissemester Begleitseminar Praxissemester SE 2 3
3 Mathematik lehren und lernen Mathematik lehren und lernen VO+ÜB 1+2 4
4 Begleitmodul zur Masterarbeit Professionelles Handeln weiter­entwickeln aus der Sicht der Mathematik­didaktik bzw. elementaren Mathematik SE 2 2
4 Masterarbeit1 20
Summe2 12 16

1 Die Masterarbeit kann auch in einem anderen Fach geschrieben werden.
2 Ohne Masterarbeit.

Verwandte Seiten

Studienstruktur

Dieser Artikel ist gültig bis 2016-08-18