Studienverlaufsplan:Mathematische Grundbildung Master vertieft

Aus LehramtsWiki
Version vom 17. Januar 2025, 10:06 Uhr von Lea Kroll (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Aufbau des Studiums

Du findest eine Übersicht der Studienstruktur für deinen Bachelor- und Master-Studiengang im LehramtsWiki.

Master

Studierende des Grundschullehramts müssen sich für ein vertieftes Studium entscheiden. Die Vertiefung kann in den Lernbereichen sprachliche oder mathematische Grundbildung oder aber in dem dritten Unterrichtsfach erfolgen. Das Studienfach Mathematische Grundbildung im Masterstudiengang mit Lehramtsoption für Grundschulen kann vertieft oder nicht-vertieft studiert werden:

Vertieft

Entnommen aus Verkündungsblatt Jg. 9, 2011 S. 973 / Nr. 137, veröffentlicht am 14. Dezember 2011, ergänzt durch die siebte Änderungsordnung, veröffentlicht am 26. Juni 2024.

Modul CP (insgesamt) Modulabschlussprüfung
Mathematik Schwerpunkt Anwendungen 5 Klausur
Mathematik Schwerpunkt Strukturen 5 Klausur
Vertiefung Didaktik und Fach Mathematik 12 Vortrag
Praxissemester 5 bzw. 11 Mündliche Prüfung
Begleitmodul zur Masterarbeit 3 Keine Modulabschlussprüfung
Masterarbeit2 20 Abschlussarbeit
Summe3 25

1In diesen Seminaren wird ein besonderer Schwerpunkt auf Diagnose und Förderung gelegt. Wird im Fach dabei kein Studienprojekt angefertigt, werden für die Lehrveranstaltung 1 CP vergeben (Prüfungsleistung entfällt). Wird ein Projekt angefertigt, werden 5 CP vergeben.
2 Die Masterarbeit kann auch in einem anderen Fach geschrieben werden.
3 Ohne Praxissemester und Masterarbeit.

 
Semester Modul Veranstaltungen Veranstaltungstyp SWS CP
1 Mathematik Schwerpunkt Anwendungen 1 der folgenden Veranstaltungen, z.B.:
Elementare Stochastik
oder
Funktionen und Anwendungen
oder
Kryptographie
VO+ÜB 2+2 5
1 Mathematik Schwerpunkt Strukturen 1 der folgenden Veranstaltungen, z.B.:
Lineare Algebra
oder
Analytische Geometrie
oder
Elementare Zahlentheorie
VO+ÜB 2+2 5
1 Didaktik Mathematik Vorbereitung Praxissemester SE 1 2
2 Praxissemester Begleitseminar Praxissemester SE 2 1 bzw. 5
3 Didaktik Mathematik Mathematik lehren und lernen VO+ÜB 1+2 4
3 Didaktik und Fach Mathematik Vertiefendes Fach-/Didaktikseminar SE 2 3
4 Begleitmodul zur Masterarbeit Begleitveranstaltung Mathematik SE 2 3